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Approach

Results
§ Counterfeit apps impersonate existing popular 
apps in attempts to misguide users.

§ Reasons behind app impersonations include:
§ Harvesting user credentials
§ Increased advertising revenue
§ Spreading malware

§ Multi-modal embeddings for app similarity
§ Content embeddings (VGG19 fc_7)
§ Style embeddings (Gram matrix of conv_5)
§ Very spare random projection to reduce size
§ Paragraph vectors for text embeddings
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2 Abstract
Counterfeit apps or Fake apps impersonate existing popular apps in attempts to misguide users to install them for
various reasons such as collecting personal information, spreading malware, or simply increasing the revenue through
advertisements. Many counterfeits can be identified once the app is installed, but even a tech-savvy user may struggle
to detect them before installation as the app icons and descriptions are almost identical to the original app. In light
of that, this proposal aims to develop a framework with multimodal neural embeddings for detecting counterfeit apps

by leveraging the recent advancements in feature learning capabilities of deep learning methods. More specifically, we
first intend to identify app icon and screenshot similarities through style similarity and content similarity by training
a convolutional neural networks that optimises the perceptual loss. We then endeavour to combine multiple neural
embeddings, i.e. visual similarity and functional similarity (text descriptions of the apps), together for a framework that
given an app e�ciently queries a large corpus of existing apps and identifies similar apps in di↵erent aspects.

3 Research Problem & Goals
While it is easier to identify counterfeit apps when they are seen together or when the human assessor has a general
understanding on the original apps, there are number of scenarios where users can easily become victims of counterfeiters.
In Figure 1a we show two examples for counterfeit apps. This problem has been reported several times [1, 2] and
investigated briefly in a limited number of work [3, 4, 5] as we describe in Section 3.1. Automated detection of
counterfeit apps is a challenging task due to two main reasons.

• While the visual similarity between app icons, or screenshots is evident for humans there are no straight forward
methods to measure the visual similarity between the images.

• There are a number of modalities that counterfeiters can alter to make the app looks similar and also undetected
from automatic sanity checks.

Original Counterfeit

Original Counterfeit

(a)

Content	Embeddings	 Only Content	+	Style	Embeddings

(b)

Figure 1: Example counterfeit apps & the e↵ect of stylistic search (Original app icon on top-left and for a sample of
10k)

Our preliminary study showed that combining content similarity (derived from the second last layer of a pre-trained
VGGNet) and style similarity (derived from the PCA reduced Gram Matrix of conv5 1) improves the detection rate
of counterfeits as shown in Figure 1b. Inspired by early results we propose this project to investigate the potential of
multimodal embeddings for automated detection of counterfeit apps.

3.1 Related Work

While there is plethora of mobile malware detection work such as [6, 7, 8, 9, 10] only a limited amount of work focussed
on the similarity of mobile apps. One line of such work focussed on detecting clones and rebranding. Viennot et al. [11]
clustered apps based on the Jaccard Similarity of app resources such as images and layout XMLs, to identify similar apps
and used developer information such as the name and the certificate included in the app to di↵erentiate clones from
re-branding. Crussell et al. [12] clustered apps according to the code level similarity features and used developer names
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ABSTRACT
Counterfeit apps impersonate existing popular apps in attempts to
misguide users to install them for various reasons such as collecting
personal information, spreading malware, or simply to increase
their advertisement revenue. Many counterfeits can be identi�ed
once installed, however even a tech-savvy user may struggle to
detect them before installation as app icons and descriptions can be
quite similar to the original app. To this end, this paper proposes to
leverage the recent advances in deep learning methods to create im-
age and text embeddings so that counterfeit apps can be e�ciently
identi�ed when they are submitted to be published in app mar-
kets. We show that for the problem of counterfeit detection a novel
approach of combining content embeddings and style embeddings
(given by the Gram matrix of CNN feature maps) outperforms the
baseline methods for image similarity such as SIFT, SURF, LATCH,
and various image hashing methods. We �rst evaluate the perfor-
mance of the proposed method on two well-known datasets for
evaluating image similarity methods and show that, content, style,
and combined embeddings increase precision@k and recall@k by
10%-15% and 12%-25%, respectively when retrieving �ve nearest
neighbours. Second speci�cally for the app counterfeit detection
problem, combined content and style embeddings achieve 12% and
14% increase in precision@k and recall@k, respectively compared to
the baseline methods. We also show that adding text embeddings
further increases the performance by 5% and 6% in terms of preci-
sion@k and recall@k, respectively when k is �ve. Third, we present
an analysis of approximately 1.2 million apps from Google Play
Store and identify a set of potential counterfeits for top-10,000 pop-
ular apps. Under a conservative assumption, we were able to �nd
2,040 potential counterfeits that contain malware in a set of 49,608
apps that showed high similarity to one of the top-10,000 popular
apps in Google Play Store. We also �nd 1,565 potential counterfeits
asking for at least �ve additional dangerous permissions than the
original app and 1,407 potential counterfeits having at least �ve
extra third party advertisement libraries.
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1 INTRODUCTION
Availability of third party apps is one of the major reasons be-
hind the wide adoption of smartphones. The two most popular
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app markets, Google Play Store and Apple App Store, hosted ap-
proximately 3.5 million and 2.1 million apps at the �rst quarter of
2018 [1, 2] and these numbers are likely to grow further as they
have been in last few years. Handling such large numbers of apps
is challenging for app market operators since there is always a
trade-o� between how much scrutiny is put into checking apps
and encouraging developers by providing fast time-to-market. As
a result, problematic apps of various kinds have made it into the
app markets, including malware, before being taken down after
receiving users’ complaints [3, 4].

One category of problematic apps making into app markets is
counterfeits (i.e. apps that attempt to impersonate popular apps).
The overarching goals behind app impersonation can be broadly
categorised into two. First, developers of counterfeits are trying to
attract app installations and increase their advertisement revenue.
This is exacerbated by the fact that some popular apps are not
available in some countries and users who search the names of
those popular apps can become easy targets of impersonations.
Second is to use counterfeits as a mean of spreading malware. For
instance, in November 2017 a fake version of the popular messenger
appWhatsApp [5] was able to get into Google Play Store and was
downloaded over 1 million times before it was taken down. Similar
instances were reported in the past for popular apps such as Net�ix,
IFTTT, Angry Birds [6–8], and banking apps [9]. More recently,
counterfeits have been used to secretly mine crypto currencies in
smartphones [10]. Unlike the app clones [11] that show code level
similarity, these counterfeits show no similarity in codes and only
appearance-wise similar to the original app. In Figure 1, we show
an example counterfeit named Temple Piggy1 which shows a high
visual similarity to the popular arcade game Temple Run.2

a) Original (Temple Run) b) Counterfeit (Temple Piggy)

Figure 1: An example counterfeit app for the popular arcade
game Temple Run

In this paper, we propose a neural embedding-based apps simi-
larity detection framework that allows to identify counterfeit apps
from a large corpus of apps represented by their icons and text
descriptions. We leverage the recent advances in Convolutional
Neural Networks (CNNs) to generate feature embeddings from
given images using pre-trained models such as AlexNet [12], VG-
GNet [13], and ResNet [14]. However, in contrast to commonly used
1Temple Piggy is currently not available in Google Play Store.
2Temple Run - https://play.google.com/store/apps/details?id=com.imangi.templerun.
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app markets, Google Play Store and Apple App Store, hosted ap-
proximately 3.5 million and 2.1 million apps at the �rst quarter of
2018 [1, 2] and these numbers are likely to grow further as they
have been in last few years. Handling such large numbers of apps
is challenging for app market operators since there is always a
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and encouraging developers by providing fast time-to-market. As
a result, problematic apps of various kinds have made it into the
app markets, including malware, before being taken down after
receiving users’ complaints [3, 4].
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counterfeits (i.e. apps that attempt to impersonate popular apps).
The overarching goals behind app impersonation can be broadly
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attract app installations and increase their advertisement revenue.
This is exacerbated by the fact that some popular apps are not
available in some countries and users who search the names of
those popular apps can become easy targets of impersonations.
Second is to use counterfeits as a mean of spreading malware. For
instance, in November 2017 a fake version of the popular messenger
appWhatsApp [5] was able to get into Google Play Store and was
downloaded over 1 million times before it was taken down. Similar
instances were reported in the past for popular apps such as Net�ix,
IFTTT, Angry Birds [6–8], and banking apps [9]. More recently,
counterfeits have been used to secretly mine crypto currencies in
smartphones [10]. Unlike the app clones [11] that show code level
similarity, these counterfeits show no similarity in codes and only
appearance-wise similar to the original app. In Figure 1, we show
an example counterfeit named Temple Piggy1 which shows a high
visual similarity to the popular arcade game Temple Run.2
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Figure 1: An example counterfeit app for the popular arcade
game Temple Run
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descriptions. We leverage the recent advances in Convolutional
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§ Evaluate the performance on standard image 
retrieval datasets: UKBench and Holidays as 
well as a manually labelled app icon dataset.

§ Compare performance with hashing-based
methods (e.g. average, difference, perceptual)
and feature-based methods (e.g. SIFT, SURF).

§ We next do a 10-NN search on the top-10,000 
apps in the Google Play Store and check 
retrieved apps for:

§ Malware inclusion (VirusTotal)
§ Additional ad library inclusion
§ Requesting extra dangerous permissions
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15-NN 15.30 14.74 15.31 15.52 18.30 20.90 21.12 23.46
20-NN 11.89 11.40 11.87 11.97 14.07 16.14 16.31 18.23

Table 2: precision@k for all test scenarios (NN* - Nearest Neighbours)

iii) Apps - Labelled set only: Our labelled set contains 3,539
images from 806 groups. From each group, the base app icon embed-
ding (cf. Section ??) was taken as the query to retrieve the k-nearest
icons by searching through the remaining 3,538 icons.
iv) Apps - Labelled set and all remaining icons and text: This
dataset contains 1.2M images including the images in the labelled
set. The embedding of the base app icon of each group in the la-
belled set was taken as the query to search the entire image set
and retrieve the k-nearest neighbours. For the last distance metric
that contained text, we used the text embeddings generated for all
1.2M app descriptions using the method described in Section ??, in
addition to the image based content and style embeddings.

The intuition behind above test scenarios is that if the encod-
ing/embedding is a good representation of the image (or text), the
k-nearest neighbours we retrieve must be from the same group
as the query image (or text). Thus, for each scenario, we present
precision@k and recall@k, where k 2 {5, 10, 15, 20}, as the per-
formance metrics. Precision@k gives the percentage of relevant
images among the retrieved images as de�ned in equation (??).
Recall@k is the percentage of relevant images that have been re-
trieved out of the all relevant images (equation (??)). For the last
distance metric in Table ??, we considered the base app itself as the
querying item (represented by both image and text embeddings).

precision@k =
| {rele�ant ima�es} \ {retrie�ed ima�es} |

| {retrie�ed ima�es} | ⇤100%
(4)

recall@k =
| {rele�ant ima�es} \ {retrie�ed ima�es} |

| {rele�ant ima�es} | ⇤ 100%
(5)

We present precision@k and recall@k values for all four test
scenarios in Table ?? and Table ??, respectively. To choose the best
� and � values in multi-modals neural embeddings, we varied � and
� from 1 to 10 with an interval of one. We achieved the best results

when � = 5 and � = 4 and we report those results in Tables ?? and
??. The main takeaway messages from results in these two tables
can be summarised as below.

• In all four datasets, neural embedding methods outperform
hashing and feature-based methods. For example, for all four
k-NN scenarios, the style embeddings have approximately
4%–14% and 11%–26% higher performance in precision@k
and recall@k in all apps dataset compared to hashing and
feature-based baseline methods.

• In UKBench and Holidays datasets, content, style, and com-
bined embeddings increase precision@k and recall@k by 10%–
15% and 12%–25%, respectively when retrieving �ve nearest
neighbours. Combining style embeddings with content em-
beddings achieves 12% higher precision@k and 14% higher
recall@k in all app dataset compared to hashing and feature-
based baselines when k = 5. Only scenario where combined
content and style embeddings did not outperform all other
methods is the UKBench dataset. A possible reason for this
is that UKBench dataset contains images that are similar to
the ImageNet dataset used to pre-train the VGGNet.

• It is also noticeable that adding text embedding further in-
creases the performance by 3%-5% and 6%-7% in terms of pre-
cision@k and recall@k, respectively, compared to the best
neural embedding method when k 2 {5, 10}. This method is
not applicable for UkBench and Holidays datasets as there
are no associated text descriptions for those images.

• Results also show that increasing the k value in top-k scenar-
ios increases the recall@k, however, signi�cantly decreases
precision@k. The main reason is that average number of
images per groups in all four datasets is less than 5 and thus
the number of false positive images in the retrieved image
set increases when k increases.

To elaborate further on the performance of the embeddings
qualitatively, in Figure ?? and Figure ??, we present the 10-nearest
neighbours we retrieved using di�erence hashing, feature-based

6

a) Perceptual hashing b) SIFT

c) Content Embeddings d) Content + Style Embeddings

Table 1: Neural embeddings and their sizes Table 2: Precision@k  (NN* - Nearest Neighbors) 

Retrieved icons for top-10 apps in Google Play Store

Figure 8: Number of apps against the number of reporting
AV-tools in VirusTotal

Table 4: Example similar apps that contain malware

Original
app

Similar
app

AV-tools Downloads
(Original)

Downloads
(Similar)

Clean Master Ram Booster* 12
500 million
- 1 billion

500
- 1,000

Temple Run Endless Run* 12
100 million
- 500 million

5,000
- 10,000

Temple Run 2 Temple Theft Run* 12
500 million
- 1 billion

500, 000
- 1 million

Hill Climb
Racing

O�road Racing:
Mountain Climb

9
100 million
- 500 million

1 million
- 5 million

Flow Free Colored Pipes 8
100 million
- 500 million

1 million
- 5 million

Parallel Space Double Account* 17
50 million
- 100 million

100, 000
- 500, 000

* The app is currently not available in Google Play Store

we de�ne a metric, permissions di�erence, which is the di�er-
ence between the number of dangerous permissions requested by
the potential counterfeit but not the original app and number of
dangerous permissions requested by the original app but not by
the potential counterfeit app. If the permissions di�erence is a
positive value that means the potential counterfeit asks for more
dangerous permissions than the original app and vice versa if the
permissions di�erence is negative. For the 49,608 potential coun-
terfeits we had the APK �les, we calculated the permission di�erence.
The permissions were extracted by the decompiling the APK and
parsing the Android Manifest �le.

Table 5: Example similar apps with high permission di�er-
ence

Original
app

Similar
app

Permission
di�erence

Downloads
(Original)

Downloads
(Similar)

7 Minutes
Workout

7 Minute
Workout VGFIT

6
10 million
- 50 million

5,000
- 10,000

Language
Translator

Multi Language
Translator Free

9
5 million
- 10 million

100,000
- 500,000

Phone Clean
Speed Booster

Lemon
Cleaner*

12
1 million
- 5 million

10,000
- 50,000

Color Torch HD
LED �ash light

Flashlight
Messenger*

12
50 million
- 100 million

1,000
- 5,000

Farm Paradise:
Hay Island Bay

Summer
Tales

23
1 million
- 5 million

50,000
- 100,000

Mp3 Music
Download

Colorful Music
Player*

5
5 million
- 10 million

100,000
- 500,000

* The app is currently not available in Google Play Store

The cumulative sum of number of apps against the permission
di�erence is shown in Figure 9a. The value of permission di�er-
ence can vary from -26, where the counterfeit does not ask for any
dangerous permission whereas the original app asks for all the
dangerous permissions, to 26 for the opposite. Also, note that in
this graph we have data for 62,074 apps instead of the 49,608 unique
apps, because some apps were retrieved as counterfeits to more
than one app in top-10,000 popular apps giving multiples values for
permission di�erence. According to the �gure, the majority of the
potential counterfeits did not ask for more dangerous permissions
than the original app. However, still there is 17,230 potential coun-
terfeits that are asking at least one dangerous permission than the
corresponding original app (13,857 unique apps), and 1,866 poten-
tial counterfeits (1,565 unique apps) asking at least �ve additional
dangerous permissions compared to the original apps.

In Table 5 we show some example such apps and in Figure 9b we
show Google Play Store availability of the 17,230 apps that were
asking for more dangerous permissions than the original app as of
24-10-2018. As the �gure shows approximately 37% of the potential
counterfeits with a permission di�erence of �ve is currently not
available in the Google Play Store. Overall approximately 27% of the
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