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Introduction

Problem Setup

RPS Net Architecture

Training and Inference Experiments and Results
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CIFAR-100: Learning 10 Classes at a time
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CIFAR-100: Learning 20 Classes at a time
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CIFAR-100: Learning 50 Classes at a time
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ImageNet: Learning 10 Classes at a time
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FLOPS Comparison
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Evaluation for different values of M
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Variations in scaling factor
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● Incremental life-long learning is a main challenge towards the long-standing
goal of Artificial General Intelligence.

● Deep neural networks suffer from ‘catastrophic forgetting’, when a network is
sequentially trained on a series of tasks.

● Existing incremental learning approaches, fall well below the state-of-the-art
cumulative models that use all training classes at once.
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Convergence across different tasks
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● In real-life settings, learning tasks arrive in a sequence and machine learning
models must continually learn to increment already acquired knowledge.

● We consider the recognition problem in an incremental setting where new
tasks are sequentially added. Assuming a total of K tasks, each comprising of
U classes.

● we restrict exemplar memory budget to random 2000 samples for CIFAR-100
and ImageNet datasets.

● RPS-Net architecture consists of M residual blocks per layer, with a ever
learning skip connection.

● At end of each layer in RPS-Net, all the residual connections and skip
connections are combined together using element-wise addition..

● Any single path of RPS-Net can be treated as a single ResNet.

● For every J tasks, we sample N random paths and train the network separately
in parallel.

● The best path is used for next J upcoming tasks.
● When finding the paths at every J tasks, previously trained modules are
freezed at training.

● At forward pass, all the previously trained paths are cumulatively used to
calculated the loss.

● At backward pass, only the trainable modules are considered, thus its upper
bounded by depth of the network.

● Since the number modules are limited, there will be high overlaps down the
line, forcing module reusability and requires only a small residual signals to
be learned.

● We use iCIFAR-100 with 10,5 and 2 task. For ImageNet we use first 100 classes
with 10 tasks. In all setting we surpass STOA results.

Loss Function

Where,

● We study the contributions from each of our contributions extensively.

● RPS-Net complexity increases logarithmically and with forward transfer new
tasks converges quickly.

Conclusion
● In this work, we propose a novel network architecture,
random path selection strategy and controlled loss function
for incremental classifier learning.


